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The dynamical Casimir effect for neutral scalar massive field in a cavity with perfect
reflecting boundaries is revisited from a mathematical point of view. We consider some
1 + 1 and 3 + 1 dimensional examples in which the boundary oscillates. For short
times, the average number of produced particles is calculated using the second order
perturbation theory, and for large times, the method to calculate the number of created
particles is the rotating wave approximation.

KEY WORDS: dynamical Casimir effect; rotating wave approximation; particle pro-
duction.
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1. INTRODUCTION

The creation of massless particles in cavities with perfect reflecting bound-
aries whose walls oscillate in resonance with the eigenfrequencies of some quan-
tum modes has been studied in some papers (Dodonov and Klimov, 1996; Crocce
et al., 2002; Schützhold et al., 2002). In this situation the authors use several
methods to calculate the production of particles (averaging over fast oscillations
(Dodonov and Klimov, 1996), multiple scale analysis (Crocce et al., 2002), rotat-
ing wave approximation (Law, 1994; Schützhold et al., 2002). In this paper we
review and discuss from a mathematical point of view the results obtained by these
authors. For short times using the second order perturbation theory, and for large
times, in the rotating wave approximation. Our conclusion about this topic is that,
if the movement of the boundary is sufficiently smooth (C3 in 1 + 1 dimensions
and C4 in 3 + 1 dimensions) the average number of created particles is finite,
but when this movement has some type of discontinuities a divergent production
of particles is possible, in agreement with the conclusions of Moore (1970) and
Schützhold et al. (1998).
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The paper is organised as follows: In Section II we consider the neutral
Klein-Gordon field in a 3 + 1-dimensional cavity with moving boundaries, and
we assume that the velocity of the wall is of order ε. Using an instantaneous set
of eigenfunctions (see Law, 1994; Schützhold et al., 1998) the Hamiltonian and
the energy of the system are calculated.

Once we have quantised the field, we calculate the time-evolved vacuum state
in the same way as Schützhold et al. (1998), and then we obtain, until order ε2,
the average number of produced particles.

In Section 3 some examples in 1 + 1-dimensions are studied. For short times,
the formulae obtained in Section 2 are used to calculate the average number of
produced particles in an oscillating cavity. For large times, the number of produced
particles in an oscillating cavity is obtained in the rotating wave approximation.

In Section 4 the dynamical Casimir effect is studied in a 3 + 1-dimensional
cavity with an oscillating boundary. Some examples are discussed, one resonant
mode, two coupled non-resonant modes, etc. . . In all cases, the number of produced
particles is calculated in the rotating wave approximation.

2. CANONICAL FORMULATION

2.1. Hamiltonian and Energy

We consider a neutral massive scalar field in a cavity �t with perfect reflecting
moving boundaries. We assume that the boundary is at rest for times smaller than
0 and returns to the initial position at time T . We also suppose that their velocity is
of the order ε (where ε is a small dimensionless parameter). Then, the Hamiltonian
of the system is (see Schützhold et al., 1998; Schaller et al., 2002)

H (t ; ε) ≡
∑

n

PnQ̇n − L(t ; ε)

= 1

2

∑

n

(
P 2

n + ω2
n(t ; ε)Q2

n

) +
∑

n,k

PnMnk(t ; ε)Qk, (1)

with

Pn ≡ ∂L

∂Q̇n
= Q̇n +

∑

k

QkMkn(t ; ε) and

Mnk(t ; ε) =
∫

�t

d3xḟn(t, x; ε)fk(t, x; ε), (2)
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where we have introduced a real complete orthonormal set of functions fn(t, x; ε)
satisfying the eigenvalue problem

{
c2h2�xfn − m2c4fn + h2ω2

n(t ; ε)fn = 0
fn|∂�t

= 0.
(3)

To calculate the energy density of the system, we need the Lagrangian density
of the system

L(t, x) = 1

2
(h2(∂tφ)2 − c2h2|∇xφ|2 − m2c4φ2);

∀x ∈ �t ⊂ R
3 and ∀t ∈ R. (4)

If we use the canonical conjugated momentum

ξ (t, x) ≡ ∂L
∂(∂tφ)

= h2∂tφ(t, x), (5)

the energy density is given by

E(t, x) ≡ ξ∂tφ − L(t, x) = 1

2

(
ξ 2

h2 + c2h2|∇xφ|2 + m2c4φ2

)
, (6)

and the energy is E(t ; ε) ≡ ∫
�t

d3xE(t, x).
From the expansions

φ(t, x) =
∑

n

Qn(t)

h
fn(t, x; ε) and ξ (t, x) =

∑

n

hPn(t)fn(t, x; ε), (7)

we obtain

E(t ; ε) = 1

2

∑

n

(
P 2

n + ω2
n(t ; ε)Q2

n

)
. (8)

The equations (1) and (8) show that the energy is not the Hamiltonian of the
system.

Remark 2.1. The Hamiltonian of the system can also be obtained as follows:
Firstly we transform the moving boundary into a fixed one making a not conformal
change of coordinates

R : (s, u) → (t(s, u), x(s, u)) = (s, R(s, u)), (9)

that transform the domain �t into a domain �̃ independent of the time.
Making use of the coordinates (s, u), the action of the system behaves

S =
∫

R

∫

�̃

L̃(s, u)d3uds, (10)
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with L̃(s, u) ≡ JL(R(s, u)), where we have introduced the Jacobian of the change
J , defined by d3x ≡ Jd3u. Let’s consider the function φ̃ defined by φ̃(s, u) ≡√

Jφ(R(s, u)). Then, the canonical conjugated momentum is

ξ̃ (s, u) ≡ ∂L̃
∂(∂sφ̃)

= h2

(
∂sφ̃ − 1

2
φ̃∂s(ln J )+ < ut ,∇uφ̃ − 1

2
φ̃∇u(ln J ) >

)

= h2
√

J∂tφ(R(s, u)), (11)

and therefore, the Hamiltonian density is

H̃(s, u) ≡ ξ̃ ∂s φ̃ − L̃(s, u)

= 1

2

(
ξ̃ 2

h2 + c2h2J |∇xφ|2 + Jm2c4φ2

)
+ ξ̃ (∂sφ̃ −

√
J∂tφ), (12)

The Hamiltonian density in the coordinates (t, x) is given by

H(t, x) ≡ H̃(R−1(t, x))
d3u
d3x

= 1

J
H̃(R−1(t, x)) (13)

Now, from the formulae (5) and (11) we have ξ̃ (s, u) = √
Jξ (R(s, u)), and an

easily calculation provides

H(t, x) = 1

2

(
ξ 2(t, x)

h2 + c2h2|∇xφ(t, x)|2 + m2c4φ2(t, x)

)

+ ξ (t, x)〈∂sR(R−1(t, x)),∇xφ(t, x)〉

+ 1

2
ξ (t, x)φ(t, x)∂s(ln J )|R−1(t,x)

. (14)

Finally, is not difficult to check that from this Hamiltonian density we obtain
the Hamiltonian defined in formula (1).

2.2. Quantum Theory

Since we have assumed that �t ≡ � for t ∈ (−∞, 0] ∪ [T ,∞), we can de-
fine, in the Schrödinger picture, the creation and annihilation operators for times
smaller than zero and greater than T, in the following way (see Eq. (22) of the
Schützhold et al., 1998)

â†
n = 1√

2hωn(0)
(−iP̂n + ωn(0)Q̂n); ân = 1√

2hωn(0)
(iP̂n + ωn(0)Q̂n). (15)
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Then, the Hamiltonian operator can be written as follows:

Ĥ (t ; ε) =
∑

n

hωn(0)

(
â†

nân + 1

2

)

+ h

4

∑

n

ω2
n(t ; ε) − ω2

n(0)

ωn(0)
((â†

n)2 + (ân)2 + 2â†
nân + 1)

+ ih

4

∑

nk

Mnk(t ; ε)

(√
ωn(0)

ωk(0)
−

√
ωk(0)

ωn(0)

)
(â†

nâ
†
k − ânâk)

+ ih

2

∑

nk

Mnk(t ; ε)

(√
ωn(0)

ωk(0)
+

√
ωk(0)

ωn(0)

)
â†

nâk. (16)

When the boundary moves, that is, when t ∈ (0, T ), we can define the “quasi-
particle” creation and annihilation operators (see for details Grib et al., 1994), by

α̂†
n(t) = 1√

2hωn(t ; ε)
(−iP̂n + ωn(t ; ε)Q̂n);

α̂n(t) = 1√
2hωn(t ; ε)

(iP̂n + ωn(t ; ε)Q̂n). (17)

Then, using these operators the energy operator has the form

Ê(t ; ε) =
∑

n

hωn(t ; ε)

(
α̂†

n(t)α̂n(t) + 1

2

)
. (18)

Now, let T t be the quantum evolution operator of the Schrödinger equation,
and let |0〉 be the initial quantum state, then the average number of produced
“quasi-particles” in the n-mode at time t is

Nm
n (t) ≡ 〈0| (T t

)†
α̂†

n(t)α̂n(t)T t |0〉 (19)

where m denotes the mass of the field.
If we use the identity

(
ω2

k(t ; ε) − ω2
n(t ; ε)

)
Mkn(t ; ε)

=
∫

∂�t

< c2(ḟk∇fn)|∂�t
, N > dS − 2ω̇k(t ; ε)ωk(t ; ε)δnk, (20)
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where N is the outward unit normal and dS is the differential of surface, a simple
calculation lead to the formula

Nm
n (t)

=
∑

k

ε2
∣∣∣
∫ t

0 dτ
∫
∂�

e−i(ωn(0)+ωk(0))τ < c2(∂εḟk(τ, x; 0)∇fn(τ, x; 0))|∂�
, dS >

∣∣∣
2

4ωk(0)ωn(0)(ωk(0) + ωn(0))2

+O(ε4). (21)

For times greater than the stopping time, the average number of produced
particles in the n-mode is

Nm
n (t ≥ T )

≡
∑

k

ε2
∣∣∣
∫ T

0 dτ
∫
∂�

e−i(ωn(0)+ωk(0))τ < c2(∂εḟk(τ, x; 0)∇fn(τ, x; 0))|∂�
, dS >

∣∣∣
2

4ωk(0)ωn(0)(ωk(0) + ωn(0))2

+O(ε4). (22)

3. EXAMPLES (1+1 DIMENSIONAL CASE)

Consider the domain �t = [0, L + εg(t)]. In this situation the formula (21)
behaves

Nm
n (t) = ε2

L2

(cπ

L

)4 ∞∑

k=1

k2n2
∣∣∣
∫ t

0 ġ(τ )ei(ωn(0)+ωk (0))τ dτ

∣∣∣
2

ωn(0)ωk(0)(ωn(0) + ωk(0))2
+ O(ε4), (23)

where the frequencies are ωn(0) = 1
h

√
c2π2h2n2

L2 + m2c4.

Remark 3.1. From this formula, assuming that g ∈ C1(R), if we integrate by parts
we can easily show that the average number of produced “quasi-particles” at time
t , Nm(t) ≡ ∑∞

n=1 Nm
n (t), is infinite. For times greater than the stopping time T , if

g ∈ C1(R \ {t0}) the number of produced particles is also infinite (see for details
ref. [1]).

For massless “quasi-particles” we have the formula

N 0
n (t) = ε2

L2

∞∑

k=1

kn

(n + k)2

∣∣∣∣
∫ t

0
ġ(τ )ei cπ

L
(n+k)τ dτ

∣∣∣∣
2

+ O(ε4). (24)
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And the average number of produced “quasi-particles” at time t is

N 0(t) ≡
∞∑

n=1

N 0
n (t) = ε2

6L2

∞∑

j=1

(
j − 1

j

) ∣∣∣∣
∫ t

0
ġ(τ )ei cπ

L
τj dτ

∣∣∣∣
2

+ O(ε4). (25)

From this last formula we can see that the concept of particle, when the bound-
ary moves, is ill-defined. Effectively, using the frequency cut-off e− cπ

L
jγ we get

N 0(t, γ ) ≡ ε2

6L2

∞∑

j=1

(
j − 1

j

) ∣∣∣∣
∫ t

0
ġ(τ )ei cπ

L
τj dτ

∣∣∣∣
2

e− cπ
L

jγ

= − ε2

6c2π2
ġ2(t) ln

(cπ

L
γ
)

+ ε2

6

∫ t

0
dτ

∫ τ

0
ds ln

(
2 − 2 cos

(cπ

L
(τ − s)

))

×
[ . . .

g (s)ġ(τ )

c2π2
+ ġ(s)ġ(τ )

L2

]
+ O

(cπ

L
γ
)

.

Then we can define the renormalised number of produced “quasi-particles”
as follows:

N 0
R(t) ≡ ε2

6

∫ t

0
dτ

∫ τ

0
ds ln

(
2 − 2 cos

(cπ

L
(τ − s)

))[ . . .
g (s)ġ(τ )

c2π2
+ ġ(s)ġ(τ )

L2

]
.

From this formula we can deduce that, when the boundary moves, the renor-
malised number of produced “quasi-particles” does not have a defined sign (For
example if we take g(t) ∼ L0(w0t)N for t ∈ [0, δ] with 0 < δ � 1 and N ≥ 3,
we have N 0

R(t) < 0). Then we can conclude that, when the boundary moves, the
“quasi-particles” are not veritable particles.

On the other hand, when the boundary returns at rest, if g ∈ C2(R) ∩ C3[0, T ],
we find

N 0(t ≥ T ) = ε2L2

6c4π4

∞∑

j=1

(
1

j 3
− 1

j 5

) ∣∣∣∣
∫ T

0

. . .
g (τ )ei cπ

L
τj dτ

∣∣∣∣
2

+ O(ε4).

That is, the number of produced particles is positive and finite.

3.1. Oscillating Boundaries: Creation of Massless Pairs

Example 3.1. In this first example we study the creation of massless particles
when g has the form g(t) = L sin (2ωr (0)t), with r ∈ N. We take the stopping
time TN = 2π

ω1(0)N with N ∈ N, and we assume that εω1(0)TN � 1.
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Remark 3.2. In this case the stopping time is a period of the function

ġ(τ )ei cπ
L

(n+k)τ ,

that appears in formula (24).
Then, from the formula (24) and using that the Hamiltonian is a periodic

operator, we obtain the same result as Ji et al. (1996)

N 0
n (t ≥ TN ) =

{ 1
4 (εω1(0)TN )2 (2r − n)n + O((εω1(0)TN )4) for n < 2r

O((εω1(0)TN )4) for n ≥ 2r.
(26)

And therefore, the number of produced particles is

N 0(t ≥ TN ) = 1

24
(εω1(0)TN )2 (2r − 1)2r(2r + 1) + O((εω1(0)TN )4). (27)

Example 3.2. In this second example we consider the function g(t) =
L sin (2ω1(0)t), and we suppose that the stopping time TN is given by TN =

π
ω1(0) (2N + 1) with N ∈ N and N � 1. We also assume that εω1(0)TN � 1. From
(24) we easily obtain

N 0
1 (t ≥ TN ) ≈ 1

4
(εω1(0)TN )2 ;

N 0
n (t ≥ TN )

N 0
1 (t ≥ TN )

≈ 0 for n > 1. (28)

On the other hand, it is not difficult to show that N 0(t ≥ TN ) = ∞. Conse-
quently, we cannot make the approximation

N 0
n (t ≥ TN ) ≈ 1

4
(εω1(0)TN )2 δ1,n, (29)

because according to this approximation we have N 0 (t ≥ TN ) = N 0
1 (t ≥ TN ),

in contradiction with N 0 (t ≥ TN ) = ∞.

Example 3.3. In this last example we would like to answer the question: When the
approximation (29) is right? One answer would be when g satisfies the following
assumptions:

(1) − g ∈ C2(R) ∩ C3[0, T ]

(2) − g(t) = L sin (2ω1(0)t) ∀t ∈
[

2π

ω1(0)
,

2π

ω1(0)
N∗

]
,

where N∗ ∈ N satisfies
2π

ω1(0)
N∗ < T ≤ 2π

ω1(0)
(N∗ + 1),

(3) − T � 1 and εω1(0)T � 1. (30)
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With this hypothesis, for n > 1 the average number of produced pairs in the
n-mode is:

N 0
n (t ≥ T ) = ε2L2

c4π 4

∞∑

k=1

kn

(k + n)6

∣∣∣∣∣∣

∫

I

. . .
g (τ )ei cπ

L
(n+k)τ dτ

∣∣∣∣∣∣

2

+ O((εω1(0)T )4), (31)

where I = [0, 2π
ω1(0) ] ∪ [ 2π

ω1(0)N
∗, T ]. And then

∞∑

n=2

N 0
n (t ≥ T ) ≤ 6ε2L4

c6π4
||

. . .
g ||2∞(ζR(3) − ζR(5)), (32)

where ζR is the Riemann zeta function.
On the other hand, for n = 1 we have

N 0
1 (t ≥ T ) = 1

4
(εω1(0))2

(
2L

c
(N∗ − 1)

)2

+ ε2L2

c4π4

∞∑

k=1

k

(k + 1)6

∣∣∣∣∣

∫

I

. . .
g (τ )ei cπ

L
(1+k)τ dτ

∣∣∣∣∣

2

− ε2L

4c2π
(N∗ − 1)

∫

I

. . .
g (τ ) cos(2ω1(0)τ )dτ + O((εω1(0)T )4). (33)

Consequently, since T � 1 and 2L
c

(N∗ − 1) ≈ T , we have

N 0
1 (t ≥ T ) ≈ ε2

4

(cπ

L
T

)2
;

∑∞
n=2 N 0

n (t ≥ T )

N 0
1 (t ≥ T )

≈ 0. (34)

And thus, when g satisfies (30), the approximation (29) holds.

Remark 3.3. From this last example, we conclude that the formula (4.6) of the
Ji et al. (1996) is valid for t ≥ T , only when g satisfies a similar version of the
assumption (30).

3.2. Rotating Wave Approximation

Here we will calculate, for large times, the average number of produced
particles in the massless case. When the Hamiltonian in the interaction picture is a
periodic operator, we can use the so-called “Rotating wave approximation,” based
in the following approximation:

Firstly using the time-ordering operator T̂ , we can write the evolution oper-
ator in the form

T t = T t
0 T̂ exp

(
− i

h

∫ t

0
ŴI (τ ; ε)dτ

)
, (35)

where ŴI (τ ; ε) ≡ ĤI (τ ; ε) − ĤI (τ ; 0) taken in the Interaction picture.
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Let τ̃ be the period of ŴI (τ ; ε), then the RWA is based in the approximation
(see Thimmel et al., 1999)

T t ≈ T t
0 e− i

h
Ŵeff (ε)t , (36)

where Ŵeff(ε) ≡ 1
τ̃

∫ τ̃

0 ŴI (τ ; ε) dτ

Remark 3.4. When t = τ̃N with N ∈ N, we have exactly
T t = T t

0 e− i
h
Ŵeff (ε)t .

Here we make another approximation. The operator e− i
h
Ŵeff (ε )̃τN can be ex-

panded in power series of the dimensionless parameters ε and N in the form

e− i
h
Ŵeff (ε )̃τN =

∑

r, s
r ≥ s

Âr,sε
rNs. (37)

Thus, in the case that εN ∼ O(1) or εN � 1, we can only retain the terms
(εN )n, and it is not difficult to show that (see Schützhold et al., 2002; Schaller
et al., 2002)

e− i
h
Ŵeff (ε )̃τN ≈ e− i

h
εĤeff τ̃N , (38)

where the effective Hamiltonian is defined by Ĥeff ≡ 1
τ̃

∫ τ̃

0 ∂εŴI (τ ; 0)dτ . Finally,
assuming that the stopping time is τ̃N , our RWA approximation that suits when
εN � 1 or εN ∼ O(1), is

T t ≈ T t
0 e− i

h
εĤeff τ̃N ∀t ≥ Nτ̃ . (39)

Example 3.4. If we take g(t) = L sin(2ω1(0)t) for t ∈ (0, 2π
ω1(0)N ), we have

Ĥeff = −ih

4
ω1(0)

[
(â†

1 )2 − (â1)2 + 2
∞∑

n=1

√
n(n + 2)(â†

n+2ân − â†
nân+2)

]
(40)

Thus, in the rotating wave approximation, the average number of massless
particles in the l-mode is

N 0
l (t ≥ TN ) ≈ 〈0| exp

(
i

h
εĤeffTN

)
â
†
l âl exp

(
− i

h
εĤeffTN

)
|0〉, (41)

where TN ≡ 2π
ω1(0)N .

Now, if we define

ĉl(s) ≡ exp

(
i

h
εĤeffs

)
âl exp

(
− i

h
εĤeffs

)
,

we can write

N 0
l (t ≥ TN ) ≈ 〈0|ĉ†l (TN )ĉl(TN )|0〉. (42)
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The operators ĉl(s) satisfy the Heisenberg equation ˙̂cl(s) = ε i
h

[Ĥeff, ĉl(s)].
In our case, these equations are

{
˙̂c1 = εω1(0)

2 (−ĉ
†
1 + √

3ĉ3)

˙̂cl = εω1(0)
2 (−√

l(l − 2)ĉl−2 + √
l(l + 2)ĉl+2) for l ≥ 2.

(43)

Now, following the Dodonov and Klimov (1996), we write

ĉr (s) =
∞∑

n=1

ân

√
r

n
ξ (n)
r (s) + â†

n

√
r

n

(
η(n)

r (s)
)∗

, (44)

and we introduce the dimensionless parameter µ = εω1(0)
2 s, then inserting (44)

into (43) we obtain the equation (3.2)–(3.5) of Dodonov and Klimov (1996).
And therefore, we have (see formula (6.5) of Dodonov and Klimov, 1996)

N 0
1 (t ≥ TN ) ≈ 2

π2
E(

√
1 − e−8µN )K(

√
1 − e−8µN ) − 1

2
, (45)

where µN ≡ εω1(0)
2 TN and, E and K are the elliptic integrals

E(x) =
∫ π

2

0
dα

√
1 − x2 sin2 α; K(x) =

∫ π
2

0

dα√
1 − x2 sin2 α

.

Then when µN � 1 we obviously obtain (26) with r = 1. On the other hand,
when µN � 1 the formula (45) provides (see (6.7) of Dodonov and Klimov, 1996)

N 0
1 (t ≥ TN ) ≈ 8

π2
µN + 2

π2
ln 4 − 1

2
. (46)

However we cannot ensure the correctness of this formula because our ap-
proximation is only valid when µN � 1 or µN ∼ O(1). Moreover, according
to (46) we have N 0

1 (t ≥ TN ) � 1, this shows that particles created by oscillat-
ing boundaries could easily detected, but we do not know any experiment that
measures the dynamical Casimir effect.

Remark 3.5. If we take the stopping time TN = π
ω1(0) (2N + 1) (in this case TN �=

τ̃N ), our RWA is a bad approximation. Effectively, we have

exp

(
ε

i

h
ĤeffTN

)
= 1 − ε

i

h
ĤeffTN + · · · ,

and then

N 0 (t ≥ TN ) ≈ ε2T 2
N

h2

∞∑

n=1

〈0|Ĥeff â
†
n(TN )ân(TN )Ĥeff|0〉 + · · ·

= 1

4
(εω1(0)TN )2 + O((εω1(0)TN )4),
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but in the same way as the example 3.2, we can deduce that, the term of order ε2

of the number of produced particles at times greater than TN is divergent.
To obtain the result (45) for times T �= τ̃N with εω1(0)T ∼ O(1) we must

make a similar version of the assumption (30) (see for more details the Section
4.2).

3.3. Energy Calculation in the RWA: 1+1-Dimensional Case

Here we calculate the energy of the system studied in the example 3.4. The
energy of this system has been calculated in the Dodonov and Klimov (1996).
Here using the RWA we will obtain, in an easier way, the same result.

The radiated energy is

〈Ê0(TN )〉 ≡
∞∑

k=1

hωk(0)N 0
k (s ≥ TN ) = hω1(0)

∞∑

r,n=1

r2

n

∣∣η(n)
r (TN )

∣∣2
,

with TN = 2π
ω1(0)N .

For s ∈ [0, TN ] we consider the quantity

〈Ê0(s)〉 ≡ hω1(0)
∞∑

r,n=1

r2

n

∣∣η(n)
r (s)

∣∣2
, (47)

and following the Dodonov and Klimov (1996) we define the function S(n)(s) =∑∞
r=1 r2|η(n)

r (s)|2, that satisfies the differential equation

S̈(n) = εω1(0)

2

(
ξ

(n)
1

(
η̇

(n)
1

)∗ + (
ξ

(n)
1

)∗
η̇

(n)
1 − ξ̇

(n)
1

(
η

(n)
1

)∗ − (
ξ̇

(n)
1

)∗
η

(n)
1

)

+
(

εω1(0)

2

)2 [
4
(∣∣ξ (n)

1

∣∣2 − ∣∣η(n)
1

∣∣2) + 16S(n)
]
. (48)

The operators ĉ(s) and ĉ†(s) defined in the example 3.4 satisfies the commu-
tation rules

[ĉj (s), ĉk(s)] = 0; [ĉ†j (s), ĉk(s)] = −δj,k,

then, from the first equation of (43), and from the equations (3.2)–(3.4) of the
Dodonov and Klimov (1996), if we use these commutation rules, we obtain the
relation

∞∑

n=1

1

n

(
ξ̇

(n)
1

(
η

(n)
1

)∗ − ξ
(n)
1

(
η̇

(n)
1

)∗) = εω1(0)

2
. (49)
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From the equation [ĉ†1(s), ĉ1(s)] = −1 we have

∞∑

n=1

1

n

(∣∣ξ (n)
1

∣∣2 − ∣∣η(n)
1

∣∣2
)

= 1. (50)

Thus, for s ∈ [0, TN ], the function 〈Ê0(s)〉 satisfies the equation

d2

ds2
〈Ê0(s)〉 =

(
εω1(0)

2

)2 (
16〈Ê0(s)〉 + 2hω1(0)

)
. (51)

And therefore, since 〈Ê0(0)〉 = d
ds

〈Ê0(0)〉 = 0, when εω1(0)TN ∼ O(1) or
εω1(0)TN � 1, in the RWA the total radiated energy is

〈Ê0(TN )〉 = 1

4
hω1(0) sinh2(εω1(0)TN ). (52)

4. EXAMPLES (3 + 1 DIMENSIONAL CASE)

In this Section we consider a rectangular cavity with a moving wall, that is,
a volume of this form

�t = [0, L1 + εg(t)] × [0, L2] × [0, L3].

In this case the formula (21) behaves

Nm
n (t) = ε2

L1
2

(
cπ

L1

)4 ∞∑

k∈N
3

k2
1n

2
1

∣∣∣
∫ t

0 ġ(τ )ei(ωn(0)+ωk(0))τ dτ

∣∣∣
2

ωn(0)ωk(0)(ωn(0) + ωk(0))2
δk2,n2δk3,n3

+O(ε4), (53)

where the frequencies are

ωn(0) = 1

h

√

c2π2h2

(
n2

1

L2
1

+ n2
2

L2
2

+ n2
3

L2
3

)
+ m2c4.

Remark 4.1. From this formula, assuming that g ∈ C2(R), if we integrate by
parts we can easily deduce that, the average number of produced “quasi-particles”
at time t , Nm(t) ≡ ∑∞

n=1 Nm
n (t), is infinite. For times greater than the stopping

time T , if g ∈ C1(R) ∩ C2(R \ {t0}), the number of produced particles is also
infinite.
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4.1. Oscillating Boundaries

If we take the function g(t) = L1 sin(ωn(0)t), an easy calculation provides
that

Nm
n (t ≥ T ) = ∞ ∀n ∈ N

3. (54)

Consequently, to obtain a similar result to the obtained in formula (29) we
need some assumptions. We will suppose that

(1) − g ∈ C3(R) ∩ C4[0, T ]

(2) − g(t) = L sin(2ω(1,1,1)(0)t) ∀t ∈
[

π

ω(1,1,1)(0)
,

π

ω(1,1,1)(0)
N∗

]
,

where N∗ ∈ N satisfies
π

ω(1,1,1)(0)
N∗ < T ≤ π

ω(1,1,1)(0)
(N∗ + 1)

(3) − T � 1 and εω(1,1,1)(0)T � 1. (55)

Now assuming (55) we can check that

∑

n∈N3

n �=(1,1,1)

Nm
n (t ≥ T ) ≤ Kε2L6

c8
||g....||∞ + O(ε4), (56)

where K is a constant independent on N∗. We also obtain

Nm
(1,1,1) (t ≥ T ) = 1

36

(
εω(1,1,1)(0)

)2
(

N∗ − 1

ω(1,1,1) (0)
π

)2

+ R + O(ε4), (57)

with

|R| ≤ Cε2(N∗ − 1)L3

c8
||g....||∞,

where C is a constant independent on N∗. Thus, since T ≈ π
ω(1,1,1)(0) (N

∗ − 1), we
have

∑
n ∈ N

3

n �= (1, 1, 1)

Nm
n (t ≥ T )

Nm
(1,1,1)(t ≥ T )

≈ 0;

Nm
(1,1,1)(t ≥ T ) ≈ 1

36
(εω(1,1,1)(0)T )2, (58)

and therefore, we conclude that

Nm
n (t ≥ T ) ≈ 1

36

(
εω(1,1,1)(0)T

)2
δn,(1,1,1). (59)
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4.2. Rotating Wave Approximation

In the 3 + 1-dimensional case, to obtain the number of created particles for
large times, we make the assumptions 1 and 2 of (55) with ω = 2ω(1,1,1)

If we suppose that T � 1 and, εωT � 1 or εωT ∼ O(1). For t ≥ T , we can
make the approximation

T t ≈ T t
0 e− i

h
εĤeffT . (60)

where we have defined Ĥeff ≡ limT →∞ 1
T

∫ T

0 ∂εŴI (τ ; 0) dτ (see for details
Schützhold et al. (2002) and Schaller et al. (2002)).

Example 4.1. In this first example we take ω = 2ωr(0). We assume that L1

is a transcendent number and, L2 and L3 are rational numbers. In this case,
there not exist any mode n and k with n2 = k2 and n3 = k3 such that 2ωr(0) =
ωn(0) ± ωk(0).

Then, we have

T t ≈ T t
0 exp

(
1

4
ε
π2c2r2

1 /L2
1

ωr(0)
T [(âr)2 − (â†

r )2]

)
, (61)

Now taking into account the formula (see Lo and Sollie, 1993)

Ŝ†
n(β)ânŜn(β) = cosh(|β|)ân + β

|β| sinh(|β|)â†
n, (62)

where

Ŝn(β) = exp

(
1

2
[β(â†

n)2 − β∗(ân)2]

)
,

we obtain, that the average number of produced particles in the s-mode, is

Nm
s (t ≥ T ) ≈ sinh2

(
1

2
ε
π2c2s2

1/L
2
1

ωs(0)
T

)
δs,r. (63)

Example 4.2. Another interesting example is when ω = wr(0) + ws(0), where
r and s are two non-resonant modes that satisfies r2 = s2 and r3 = s3. We also
assume that there is not another mode coupled with r and s, that is, there not exist
any mode n that satisfies ωn(0) = 2wr(0) + ws(0) or ωn(0) = wr(0) + 2ws(0).

In this situation we have

T t ≈ T t
0 exp

(
− ε

2

(
πc

L1

)2
r1s1√

wr(0)ws(0)
(−1)r1+s1T [â†

r â†
s − ârâs]

)
exp

(
Ô

)
, (64)

where Ô is an operator that does not contain the creation and annihilation operators
of the modes r and s.
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If we use the formulae (8) and (9) of (Lo and Sollie, 1993) the average number
of produced particles in the r-mode and in the s-mode are

Nm
r (t ≥ T ) = Nm

s (t ≥ T ) ≈ sinh2

(
ε

(
πc

L1

)2
r1s1

2
√

wr(0)ws(0)
T

)
. (65)

Example 4.3. In this example we consider the case ω = 2ωr(0), and we assume
that there exist one mode s, and only one, coupled with r, that is, a mode that
satisfies ωs(0) = 3ωr(0) with r2 = s2 and r3 = s3. In this case, we have

Ĥeff = ih

4

π2c2r2
1 /L2

1

ωr(0)
[(âr)2 − (â†

r )2]

− ih

2
√

3

π2c2/L2
1

ωr(0)
s1r1(−1)s1+r1 [â†

s âr − â†
r âs] + ihÔ, (66)

where Ô is an operator that does not contain the creation and annihilation operators
of the modes r and s.

In the same way of the example 3.4 we define the operators

ĉl(s) ≡ exp

(
i

h
εĤeffs

)
âl exp

(
− i

h
εĤeffs

)
,

Now, following the Crocce et al. (2002) if we write

ĉk(s) =
∑

n

âk

√
2ωkB

(n)
k (s) + â

†
k

√
2ωk

(
A

(n)
k (s)

)∗
,

and we introduce the new time τ = εs, we obtain the equations (41) and (42) of
the Crocce et al. (2002).

An example of this situation is the massless Klein-Gordon field in a cubic
cavity. Two coupled modes are r = (1, 1, 1) and s = (5, 1, 1). Thus, we obtain the
equations (54) and (55) of the Crocce et al. (2002) with τf = ε cT

L
.

Example 4.4. In this last example we study the case ω = ωs(0) − ωr(0), with
ωs(0) �= 3ωr(0) and r2 = s2 and r3 = s3. We also suppose that there not exist any
mode n such that ωs(0) = ωn(0) + 2ωr(0). In this situation the effective Hamilto-
nian is

Ĥeff = − ih

2

(
πc

L1

)2
s1r1

ωr(0)ωs(0)
(−1)s1+r1 [â†

s âr − â†
r âs] + ihÔ, (67)

where Ô is an operator that does not contain the creation and annihilation operators
of the modes r and s.
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From the operators

ĉl(s) = exp

(
i

h
εĤeffs

)
âl exp

(
− i

h
εĤeffs

)
,

we obtain the following system of equations
⎧
⎪⎨

⎪⎩

˙̂cs = − 1
2

(
πc
L1

)2
s1r1

ωr(0)ωs(0) (−1)s1+r1 ĉr

˙̂cr = 1
2

(
πc
L1

)2
s1r1

ωr(0)ωs(0) (−1)s1+r1 ĉs.

(68)

The solution of this system is

ĉs(s) = âs cos

(
1

2

(
πc

L1

)2
s1r1(−1)s1+r1

ωr(0)ωs(0)
s

)
− âr sin

(
1

2

(
πc

L1

)2
s1r1(−1)s1+r1

ωr(0)ωs(0)
s

)

ĉr(s) = âr cos

(
1

2

(
πc

L1

)2
s1r1(−1)s1+r1

ωr(0)ωs(0)
s

)
+ âs sin

(
1

2

(
πc

L1

)2
s1r1(−1)s1+r1

ωr(0)ωs(0)
s

)
.

Thus, we conclude that

Nr(t ≥ T ) = Ns(t ≥ T ) = 0. (69)
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